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Introduction

Methylation of a cytosine residue in the context of a CpG dinu-
cleotide on DNA is a normal epigenetic regulatory mark that 
contributes to the control of gene expression and genomic sta-
bility. Epigenetic processes, such as DNA methylation, allow a 
single genome to elicit the multitude of transcriptional programs 
characteristic of multicellular organisms, whose various cell types 
have distinct phenotypes and functions. Of course, because epi-
genetic patterns are linked to cell-specific gene expression pat-
terns, several studies have successfully identified differentially 
methylated regions (DMRs) among various cell types,1-5 i.e., 

The potential influence of underlying differences in relative leukocyte distributions in studies involving blood-based 
profiling of DNA methylation is well recognized and has prompted development of a set of statistical methods for inferring 
changes in the distribution of white blood cells using DNA methylation signatures. however, the extent to which this 
methodology can accurately predict cell type proportions based on blood-derived DNA methylation data in a large-scale 
epigenome-wide association study (EWAs) has yet to be examined. We used publicly available data deposited in the 
Gene Expression Omnibus (GEO) database (accession no. GsE37008), which consisted of both blood-derived epigenome-
wide DNA methylation data assayed using the Illumina Infinium humanMethylation27 BeadArray and complete blood 
cell (cBc) counts among a community cohort of 94 non-diseased individuals. constrained projection (cp) was used 
to obtain predictions of the proportions of lymphocytes, monocytes, and granulocytes for each of the study samples 
based on their DNA methylation signatures. Our findings demonstrated high consistency between the average cBc-
derived and predicted percentage of monocytes and lymphocytes (17.9% and 17.6% for monocytes and 82.1% and 81.4% 
for lymphocytes), with root mean squared error (rMsE) of 5% and 6%, for monocytes and lymphocytes, respectively. 
similarly, there was moderate-high correlation between the cp-predicted and cBc-derived percentages of monocytes 
and lymphocytes (0.60 and 0.61, respectively) and these results were robust to the number of leukocyte differentially 
methylated regions (L-DMRs) used for cp prediction. These results serve as further validation of the cp approach and 
highlight the promise of this technique for EWAs where DNA methylation is profiled using whole-blood genomic DNA.
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CpG sites whose methylation state is stable and differs among 
two or more cell types.

When studying DNA methylation in human health and dis-
ease, DMRs present an important challenge and a unique oppor-
tunity. For instance, DNA from peripheral blood is a mixture of 
genetic substrate from various leukocyte subtypes, and variation 
in leukocytes proportions could confound true epigenetic associ-
ations between methylation and a dependent variable of interest, 
since there is the potential for associations between phenotype 
and DNA methylation to be mediated by shifts in leukocyte 
proportions. Indeed, the potential for shifts in leukocyte com-
position to confound associations in epigenome-wide association 
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or bisulfite sequencing, the capacity to accurately predict cell 
type proportions using L-DMRs has important implications for 
any study of health, disease, or pharmacologic intervention where 
measurement of leukocyte proportions is of interest. For instance, 
in EWAS19 (Langevin et al., under review) obtaining reliable esti-
mates of relative leukocyte proportions using DNA-based meth-
ods could be used for better understanding the extent to which 
observed differences in whole-blood DNA methylation are due 
to underlying differences in leukocyte subtypes themselves or 
reflect direct changes in the methylome. Along these lines, the 
predicted cell type proportions obtained from constrained pro-
jection could be added as additional covariate terms to control for 
the confounding effects of variable leukocyte distribution when 
examining the association between DNA methylation and some 
phenotype/exposure of interest. In fact, the approach described 
in Houseman et al.18 has been successfully applied in the con-
text of several EWAS19,39 (Langevin et al., under review) and was 
shown to reliably estimate leukocyte proportions in a small-scale 
mixture experiment involving six known mixtures of monocytes 
and B cells and six known mixtures of granulocytes and T cells.18 
However, a comprehensive examination of the potential for con-
strained projection to accurately predict cell type proportions in 
large-scale epigenome-wide DNA methylation data sets has not 
been shown.

Lam et al.20 recently investigated the relation of peripheral 
blood DNA methylation with demographic, socioeconomic and 
psychosocial factors among a cohort of 94 healthy individuals 
using commercially available epigenome-wide methylation array 
technology. In addition, these authors subjected each blood 

studies (EWAS) has been recognized.6-12 The underlying propor-
tion of leukocytes could also confound or bias other leukocyte 
DNA biomarker relationships, such as that between telomere 
length, repetitive element DNA methylation13 or mitochondrial 
copy number14 and exposures or disease outcomes.

Motivated by work from our group and others that identified 
L-DMRs that distinguish white blood cell types,10,15-17 we recently 
developed a set of statistical methods that exploit the use of 
L-DMRs for inferring changes in cell mixture proportions based 
solely on DNA methylation profiles of peripheral blood.18 In this 
approach (Fig. 1), data obtained from a target set (S

1
) consist-

ing of DNA methylation profiles from a heterogeneous mixture 
of cell populations, is assumed to be a high-dimensional mul-
tivariate surrogate for the underlying distribution of cell types. 
Houseman et al.18 proposed a cell mixture deconvolution meth-
odology that involves the projection of DNA methylation pro-
files from S

1
 onto a reference data set (S

0
), which is comprised of 

the DNA methylation signatures for isolated leukocyte subtypes. 
Under certain constraints, which we describe in more detail in 
the Statistical Methods section, the cell mixture deconvolution 
approach can be used to approximate the underlying distribution 
of cell proportions within S

1
 via constrained projection (CP).

Currently, leukocyte differential counts and flow cytometry 
measurements (the gold standard for identifying subsets of cells 
within heterogeneous mononuclear cell samples), are often not 
possible because they require fresh samples with intact cells, or 
are too costly. Thus, as epigenome-wide DNA methylation can be 
measured using archival peripheral blood with relatively straight-
forward protocols and commercially available array technology 

Figure 1. Illustration of the blood cell mixture deconvolution approach. This approach involves, (A) constrained projection of DNA methylation 
profiles from a target methylation data set (S1) onto a reference data set (S0 ), which is comprised of the DNA methylation signatures for isolated white 
blood cell types (shapes reflect different white blood cell types). The result is an estimate of the underlying distribution of cell proportions (circle, 
triangle, and hexagon) for each sample within S1. (B) This approach assumes that the methylation signature for samples within S1 are the weighted sum 
of the methylation signatures from individual white blood cell types, where the weights are proportional to the cell type frequencies.
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whole-blood by complete blood count (CBC) with differential, 
for each of the 99 samples among the 94 study subjects. The 
percentage of granulocytes in whole-blood, which ranged from 
36.1–77.5% across the study subjects, comprised the vast major-
ity of underlying cell types, constituting on average 61.7% (SD 
= 8.6%) (Fig. 2A). On average, lymphocytes and monocytes 
constituted 31.6% (SD = 8.3%) and 6.7% (SD = 2.1%) of the 
underlying cell types, and like granulocytes, exhibited substan-
tial variability across the study subjects (range 15.1–57.4% and 
1.5–13.1%, respectively) (Fig. 2A).

Since DNA methylation was assessed in PBMCs, which are 
mostly devoid of granulocytes, the percentage of lymphocytes 
and monocytes in PBMCs were taken to be the percentage of 
these cell types in the absence of granulocytes. From this, we 
estimated the average percentage of lymphocytes and monocytes 
in PBMCs to be 82.1% and 17.9%, respectively (Fig. 2B).

As in Lam et al.20, we first began by implementing a princi-
pal components analysis (PCA) to gain an understanding of the 

sample to a detailed differential blood cell count. As further vali-
dation of the methods of Houseman et al.18 for estimating rela-
tive leukocyte proportions in peripheral blood using L-DMRs, 
here we present an analysis of their methylation and differential 
blood cell count data. Specifically, we focus our attention on the 
utility of the constrained projection approach18 for accurately 
predicting relative leukocyte distributions, comparing our pre-
dictions to those obtained from a widely accepted method for 
determining cell type distributions in blood. Since there is inter-
est in balancing the number of L-DMRs and cell-type prediction 
performance, we also present an examination of the sensitivity 
of our predictions to varying numbers of L-DMRs used in the 
constrained projection procedure.

Results

As previously described,20 proportions of lymphocytes, mono-
cytes, basophils, eosinophils and neutrophils were assessed in 

Figure 2. complete blood cell (cBc) and predicted proportions of white blood cell types in the target methylation data set. cBc derived propor-
tions (i.e., Ωi

[CBC]) of white blood cell types in (A) whole-blood and (B) peripheral blood mononuclear cell (pBMcs) (i.e., devoid of granulocytes) for the 
samples in the target methylation data set. (C) predicted proportions (i.e., ) of cD8+ T-lymphocytes (cD8T), cD4+ T-lymphocytes (cD4T), Natural 
killer cells (NK), B cells (Bcell), Monocytes (Mono), and Granulocytes (Gran) for the target samples using constrained projection (cp). Black bars denote 
the median and the red dashed bars denote the 75th and 25th percentiles for the predicted cell type proportions. colored points indicate subjects 
with replicate samples, where two points of the same color denote replicate samples for the same subject.
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As DNA methylation was profiled in PBMCs, we were also 
interested in examining the specificity of CP by investigat-
ing the predicted proportions of granulocytes—which would 
be expected to be approximately zero, allowing for some small 
residual contamination in purification. As noted in Figure 2C, 
the predicted percentage of granulocytes was minimal, ranging 
from 0–7% with a mean value across the study samples of 1% 
(SD = 1.3%). Examining the correlation between the predicted 
percentage of lymphocytes, obtained by summing the individ-
ual predictions among the lymphoid-derived cells (i.e., CD4T, 
CD8T, NK, and B cells) and the percentage of lymphocytes 
via CBC (Fig. 3A), demonstrated a moderate-high correlation 
between predicted lymphocyte proportions and those obtained 
from CBC (r = 0.61; P < 0.0001). Similarly, we also observed 
a moderate-high correlation between predicted monocyte pro-
portions and those obtained from CBC (r = 0.60; I < 0.0001)  
(Fig. 3B).

Across the study samples, there was remarkable consistency 
between the average percentage of monocytes and lympho-
cytes via CBC (17.9% and 82.1%, respectively) and the average 
predicted percentage of monocytes (17.6%) and lymphocytes 
(81.3%). Furthermore, the root mean squared error (rMSE) 

(i.e., , for k ϵ {1,2,…K }) based on com-
parisons of the predicted and CBC percentages of lymphocytes 
and monocytes was 6% and 5%, respectively. We also note that 
the vast majority of our subject-specific cell type predictions were 
within the global 95% bootstrap prediction interval (Fig. 3C 
and D). Examining the bias in our cell type predictions based on 
characteristics of the study subjects showed some evidence of an 
association between cell type-specific prediction error and stress  
(P = 0.06 and 0.05 for monocytes and lymphocytes, respectively), 
depression (P = 0.07 and 0.03 for monocytes and lymphocytes, 
respectively) and current SES status (P = 0.02 for lymphocytes) 
(Tables S1 and S2). However none of the aforementioned P val-
ues remained statistically significant after controlling for mul-
tiple comparisons.

Two possibilities to explain this phenomenon include that the 
accuracy of CBC counts are themselves associated stress, depres-
sion and current SES. Since this is unlikely, the second possibility 
is that the accuracy of cell type predictions via CP is associated 
with these covariates. Or in other words, a subject’s value for 
these covariates is adversely influencing the accuracy of our pre-
dictions. Since our predictions were based on CP using the top 
500 L-DMRs, this would necessarily imply that the methylation 
status of the top 500 L-DMRs are themselves altered based on 
the values of these covariates. To this end, we conducted an addi-
tional analysis aimed at investigating the association between the 
methylation status of the top 500 L-DMRs and each of the pre-
viously mentioned covariates. For this analysis, we fit a series of 
generalized estimating equations (GEE) that modeled the meth-
ylation M-values for the top 500 L-DMRs, the above covariates 
as a dependent variable, and incorporated dependency based on 
replicate samples from the same subject. These models were also 
adjusted for either the CBC-derived proportion of lymphocytes 

extent to which variation in DNA methylation across the array 
could be explained by differences in the underlying distribu-
tion of cell types. PCA represents a feature extraction technique 
where the data is orthogonally transformed, such that the first 
principal component has the largest possible variance (accounts 
for maximal amount of variability in the data), and each succeed-
ing component in turn has the next highest variance possible. 
As we detected substantial variability in DNA methylation due 
to BeadChip (Fig. S1), we first applied the ComBat21 methodol-
ogy to normalize the methylation data based on BeadChip. After 
adjusting out the effects of BeadChip on variability in DNA 
methylation, we computed the principal components, or other-
wise eigen-probes, based on the adjusted DNA methylation data. 
Not surprisingly, the CBC-derived proportions of lymphocytes 
and monocytes were found to be associated with the first and 
third eigen-probes (P = 0.07 and P = 0.06, respectively), which 
accounted for 16.5% and 5.4% of the variation of DNA methyla-
tion across the array. The second eigen-probe, which accounted 
for 9.1% of the variation in DNA methylation, was found to be 
significantly associated with exercise (minutes per week) (P = 
0.04), ethnicity (Caucasian vs. non-Caucasian) (P = 0.03), and 
marginally significantly associated with age, gender and smoking 
status (yes vs. no) (P = 0.07, 0.06, 0.09, respectively). Thus, even 
among the study subjects considered here, which were all non-
diseased at the time of sample collection, differences in white 
blood cell distributions are contributing to the observed variation 
in PMBC DNA methylation. These results provide further sup-
port for the adjustment cell type distributions when analyzing 
blood-derived DNA methylation data, particularly in situations 
where the phenotype or exposure of interest is responsible for 
shifts in leukocyte subpopulations.

We next examined the extent to which CP is capable of pro-
ducing reliable and accurate estimates of the underlying relative 
distribution of leukocytes. To discern L-DMRs, we examined 
the association between methylation and leukocyte subtype (e.g., 
CD4+ T cells, CD8+ T cells, B cells, etc.) for each of the 26 486 
autosomal CpG loci. This revealed 10 370 significantly differ-
entially methylated CpGs among the leukocyte subtypes (fdr 
q-value < 0.05), which we ranked by q-value. Consistent with Liu 
et al.,19 we applied CP using the top 500 L-DMRs, allowing us to 
obtain predictions for the proportions of CD8+ T-lymphocytes 
(CD8T), CD4+ T-lymphocytes (CD4T), Natural Killer cell 
(NK), B cells (B cell), Monocytes (Mono) and Granulocytes 
(Gran) across the 99 individual samples. As there were 5 sub-
jects in S

1
 with replicate samples (collected at the same time), we 

had the unique opportunity to assess the similarity in cell type 
predictions within a replicate pair; which would be expected to 
be high. The results of this analysis are given in Figure 2C, and 
show a high-degree of similarity between the predicted cell type 
proportions among the 5 technical replicates—indicated by col-
ored points. Within a specific cell type, differences between the 
predicted percentages among technical replicates were minimal, 
with a mean difference of 2% (SD = 2%). This is also captured 
in the intra-class correlation coefficients (ICCs), which ranged 
from 0.85–0.95, demonstrating a high-degree of similarity in the 
predicted cell type proportions among technical replicates.
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We also considered a negative control analysis as a further 
validation of CP and of the utility of L-DMRs in inferring cell 
type proportions. While our previous analysis used the top 500 
L-DMRs (Fig. S2A) for predicting cell type proportions in our 
target data set, as a negative control we used 500 CpGs among 
the set of non-L-DMRs (i.e., those with fdr q-value > 0.05). 
Specifically, the 500 least discriminative CpGs across the leuko-
cyte subtypes were selected for this analysis (Fig. S2B) and used 
in the previously described CP procedure to arrive at predictions 
for cell type proportions. The results of this analysis, showed very 
little correlation between the between predicted cell type propor-
tions and those obtained from CBC (r = 0.10 for both monocytes 
and lymphocytes, respectively) and an rMSE of 34% between 
the predicted and CBC-derived cell type percentages for both 
lymphocytes and monocytes.

We next implemented a sensitivity analysis aimed at under-
standing the sensitivity of the predicted cell type proportions 

or the predicted proportion of lymphocyte subtypes (CD4T, 
CD8T, etc.) to remove the confounding effect due to interper-
sonal differences in immune cell subsets. The p-values reported 
in Table S3 reflect the omnibus p-value obtained from a permuta-
tion test (further details provided in the Supplemental Material) 
and demonstrated no association between the top 500 L-DMRs 
and stress, depression, and current SES (P = 0.45, 0.56, and 0.12, 
respectively). While a number of other covariates (age, gender, 
ethnicity) demonstrated a significant association with the top 
500 L-DMRs, none of these covariates were associated with bias 
in our cell type predictions (Tables S1 and S2). Furthermore, 
removing the L-DMRs that were significantly associated with 
age, gender, and ethnicity followed by the subsequent applica-
tion of CP using the remaining L-DMRs, showed a very high 
correlation with the previously obtained cell-type estimates 
(Pearson correlation = 0.99, 0.99, 0.98, 0.96, 0.99, and 0.97 for 
CD4T, CD8T, Bcell, NK, Mono, and Gran, respectively).

Figure 3. comparison of the predicted and cBc derived proportions of monocytes and lymphocytes among the target samples. scatter-plot of the 
predicted and cBc-derived proportions of (A) monocytes and (B) lymphocytes. solid red lines represent the unity lines (i.e., y = x). Bland-Altman plots 
for (C) monocyte and (D) lymphocyte proportions. Y-axes represent the difference in the predicted and cBc-derived cell type proportions and X-axes 
represent the mean cell type proportions based on cp prediction and cBc-based proportions. Red-dotted lines indicate the global bootstrap-based 
95% prediction intervals for the difference in predicted and cBc-derived cell type proportions.

©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



www.landesbioscience.com Epigenetics 821

in Figure 4 and show minimal variation in the correlation coef-
ficients between the predicted and CBC-derived proportions 
of monocytes and lymphocytes across different selections of m  
(Fig. 4A). Specifically, beyond 1000 L-DMRs correlations 
between the predicted and CBC-derived proportions of mono-
cytes and lymphocytes varied by at most 0.04 on the correla-
tion scale and both appeared to achieve maximum correlation 
at m = 6000 (i.e., the top 6000 L-DMRs). Similarly, there was 
minimal variation in the rMSE between the predicted and CBC-
derived proportions of monocytes and lymphocytes across dif-
ferent selections of m, with differences of at most 1.5% in rMSE 
across the selected numbers of L-DMRs (Fig. 4B). While the 

attempted to gain an understanding of the sensitivity of our pre-
dictions when m, or the number of L-DMRs used in CP was 
varied. For this analysis, m was varied from 20 to 10 000 and, 
as previously, for each selection of m the correlation and rMSE 
were used to compare the predicted and CBC-derived propor-
tions of monocytes and lymphocytes. Additionally, for each 
selection of m, the predicted proportion of granulocytes was 
recorded and used to assess the specificity of CP across differing 
selections of m. Our choice of 10 000 L-DMRs as the upper limit 
in our sensitivity analysis was based on the number of statisti-
cally significant CpG loci across the leukocyte subtypes (10 370 
with fdr q-values < 0.05). The results of this analysis are given 

Figure 4. prediction performance as a function of the number of L-DMRs used in cp. (A) pearson correlation between the predicted and cBc-derived 
proportions of monocytes (blue line) and lymphocytes (red line) as a function of the numbers of L-DMRs used in cp. (B) root mean squared error (rMsE) 
for monocytes and lymphocytes and (C) median (%) granulocytes as a function of the numbers of L-DMRs used in cp. (D) pearson correlation between 
the predicted and cBc-derived proportions of monocytes and lymphocytes as a function of the numbers of non L-DMRs (negative controls) used in 
cp.
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approximately zero potentially subject to some granulocyte con-
tamination in the isolation process.33 Our findings, which dem-
onstrated a minimal predicted percentage of granulocytes across 
the target study samples (1%; mean across study samples) illus-
trate the specificity of CP and are even more noteworthy when 
considering that granulocytes typically comprise the vast major-
ity of white blood cell types (50%–70%) in the whole-blood 
of non-diseased individuals. As our target methylation data set 
consisted of technical replicate samples for five subjects, we were 
also interested in investigating the reproducibility of CP by com-
paring the predicted cell type proportions within a replicate pair. 
Overall, our results demonstrated a high-degree of similarity in 
the predicted cell type proportions within replicate pairs. The 
minor differences between the predicted cell type proportions 
between replicate samples from the same subject is not unex-
pected given the less than perfect nature of cell sorting (>97% 
purity) to obtain S

0
, the role of measurement error in array-based 

DNA methylation assessment,34 and the well established issue 
of technical variability in DNA microarrays arising from plate/
BeadChip effects.35-37

Our findings also demonstrated high consistency between 
the average CBC-derived and predicted percentage of monocytes 
and lymphocytes (17.9% and 17.6% for monocytes and 82.1% 
and 81.4% for lymphocytes), with rMSE of 5% and 6%, for 
monocytes and lymphocytes, respectively. Moreover, bias in our 
estimates of the proportion of monocytes appeared to be inde-
pendent of most potential confounders in DNA methylation 
array analyses. Of those that showed some evidence of an associa-
tion with cell type-specific prediction error (e.g., stress, depres-
sion, and current SES status), none were significantly associated 
with the methylation status of the top 500 L-DMRs. While there 
were some covariates that exhibited significant associations with 
the top 500 L-DMRs (e.g., age, gender, and ethnicity), these 
results are likely to be conservative as the models we fit controlled 
for only the CBC-derived proportion of lymphocytes and not 
individual lymphocyte subtypes, which were not available in the 
target data set. Moreover, removal of those specific L-DMRs fol-
lowed by the subsequent estimate of cell type proportions based 
on the remaining L-DMRs showed a very high correlation with 
the previously obtained estimates. Based on these findings, 
L-DMRs that exhibited co-variation with subject-specific charac-
teristics do not seem to be substantially influencing our estimates 
of cell type proportions.

Reinforcing the potential of CP for producing accurate cell 
type predictions, we also observed a moderate-high correlation 
between predicted monocyte and lymphocyte proportions and 
those obtained from CBC counts. These results, taken together 
with the findings of our negative control analysis indicating 
poor prediction performance when CP is based on the least 
discriminative L-DMRs, stand as testament to the value of 
L-DMRs in deconvoluting cellular mixtures based on blood-
derived DNA methylation profiles in a target methylation data 
set. While our reference data set allowed us to predict the pro-
portion of specific lymphocyte subtypes (CD4T, CD8T, etc.), 
such a detailed speciation of lymphocytes was not available for 
the target data set considered here. As a result, this limited our 

median percent of granulocytes was minimized at approximately 
m = 800, like the correlation and rMSE between predicted and 
CBC-derived proportions of monocytes and lymphocytes, there 
was a fair degree of stability in the median percent of granulo-
cytes as a function of m (Fig. 4C).

In a manner similar to the sensitivity analysis described above, 
we also examined the correlation and rMSE based on predicted 
and CBC-derived proportions of monocytes and lymphocytes as 
a function of the number of non L-DMRs used in CP. Contrary 
to the relative stability in both correlation and rMSE as a function 
of the number of L-DMRs, the correlation between predicted 
and CBC-derived proportions of monocytes and lymphocytes 
based on non L-DMRs varied considerably as a function of m 
(−0.18–0.25 across the range of m) and tended to be centered 
at 0 (Fig. 4D). Similarly, the rMSE for monocytes and lympho-
cytes was as large as 47% and 48%, respectively, but stabilized at 
around m = 6000 with an rMSE of approximately 15% for both 
monocytes and lymphocytes (Fig. S3).

Discussion

Using a publicly available data set consisting of PBMC-derived 
DNA methylation and CBC counts for 99 samples across 94 
healthy non-diseased subjects, we have investigated the extent 
to which the constrained projection approach of Houseman 
et al.18 provides reliable and accurate estimates of the underly-
ing relative leukocyte distribution in blood. Owing to the fact 
that blood is a readily accessible tissue and because peripheral 
blood leukocytes have been suggested to directly or indirectly 
participate in the pathophysiology of a vast array of disease 
states,22-24 DNA methylation analyses using blood-derived 
genomic DNA have been conducted across a variety of different 
human diseases8,9,12,25-28 and also in the context of exposures.29-31 
The validation analysis considered here is motivated both by 
(1) the increasing number of EWAS using blood-based assess-
ment of DNA methylation and (2) the recognized potential 
for confounding based on underlying interpersonal differences 
in circulating immune profiles characteristic of such studies.15 
While several recent works have adjusted for CBC counts20,32 
for identifying differential patterns of methylation in blood that 
are independent of the underlying distribution of leukocytes, in 
many cases CBC counts may not be readily available (or even 
feasible), and in any case can not provide complete informa-
tion on immune variability due to their inability to discriminate 
lymphocyte subtypes. While FACS can be used to identify lym-
phocyte subtypes, this method bears a relatively high cost per 
sample and generally requires fresh samples. The limitations of 
current approaches underscore the vast potential utility of DNA 
methylation-based methods and accompanying statistical tech-
niques that are capable of accurately and reliably estimating the 
distribution of cell types.

Our initial analyses, which used the top 500 L-DMRs in CP, 
first focused on investigating the specificity of this approach. 
As DNA methylation was profiled in PBMCs (devoid of multi-
nucleate granulocytes) for the samples in our target methylation 
data set, the percentage of granulocytes would be expected to be 
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In summary, this work serves as further validation of the CP 
approach of Houseman et al.,18 using an independent data set 
based on a large-scale EWAS focused on healthy non-diseased 
adults. The increasing numbers of EWAS that involve DNA 
methylation profiling in unfractioned whole-blood coupled with 
the well-established role of confounding due to cell type distri-
butions, highlight the promise and future applications of this 
technique.

Materials and Methods

Target samples S
1
, DNA methylation from heterogeneous 

mixture of cell types. To investigate the extent to which pat-
terns of blood-based DNA methylation can be used for inferring 
the underlying distribution of cell types, we used publicly avail-
able data deposited in the Gene Expression Omnibus (GEO) 
database (accession no. GSE37008). This study, which has been 
previously described,20 consisted of epigenome-wide assessment 
of DNA methylation based on genomic DNA derived from puri-
fied peripheral blood mononuclear cells (PBMCs) from a com-
munity cohort of 94 non-diseased individuals in the Vancouver, 
BC lower mainland area.38 Individuals in this study ranged in 
age from 24 to 45 y (median = 33, SD = 5.08), were predomi-
nantly female (63%; n = 59), and non-smokers (87%; n = 82).

The Illumina Infinium HumanMethylation27 array plat-
form, which enables the quantitative assessment of the DNA 
methylation status of 27 578 CpG loci at single-nucleotide 
resolution, was used to measure DNA methylation in genomic 
DNA derived from PBMCs. The methylation status for each 
individual CpG locus was calculated as the ratio of fluores-
cent signals [β = Max(M,0)/(Max[M,0]+Max[U,0] + 100)], 
ranging from 0 (no methylation) to 1 (complete methylation), 
using the average probe intensity for the methylated (M) and 
unmethylated (U) alleles. CpG loci associated with X and Y 
chromosomes were removed from our analyses, due to gender-
associated biases. The DNA methylation status was assessed 
in replicate for 5/94 of the individuals in this study (samples 
collected at the same time point), giving rise to a total of 99 
samples that comprised the target set (S

1
) used in our validation 

analysis.
Assessment of cell type proportions in target samples, S

1
. 

As previously described by ref. 20, blood-drawn samples were 
processed immediately with density-gradient centrifugation for 
isolation of peripheral blood mononuclear cells (PBMCs). At the 
time of blood draw, samples were subjected to complete blood 
count (CBC) with differential using an Advia 70 Hematology 
System (Siemens Medical) to estimate the proportions of lym-
phocytes, monocytes, basophils, eosinophils and neutrophils. 
In addition, in a subset of PBMC samples, subpopulations of 
lymphocytes were captured by immunomagnetic selection for 
CD14+ lymphocytes as well as CD3+ monocytes.

Reference samples S
0
, DNA methylation from isolated cells. 

As previously described,10,18 our reference set (S
0
) consisted of 

sorted, normal, human, peripheral blood leukocyte subtypes 
purchased from AllCells. Leukocytes were isolated from dif-
ferent, anonymous, non-diseased individuals’ whole-blood by 

ability to assess the predictive accuracy of CP for these cell types. 
We do note, however, that future work involving measurements 
of individual lymphocyte subtypes in a target data set is currently 
underway.

As the capacity to accurately predict the underlying relative 
leukocyte distribution in blood is principally driven by DMRs 
across leukocyte subtypes, Illumina’s most recent BeadArray, 
the HumanMethylation450 BeadArray, which simultaneously 
profiles the methylation status for > 485 000 CpGs, is likely to 
reveal additional L-DMRs. In doing so, these additional L-DMRs 
could be added to our existing set of L-DMRs, which might fur-
ther improve the accuracy and precision of cell type predictions. 
As a cautionary note, attention should be given toward selecting 
L-DMRs containing SNPs at/near the targeted probe, which 
might affect the measurement of DNA methylation. Furthermore, 
while the top 500 L-DMRs used here comprised only autosomal 
CpG loci (X and Y linked loci were removed) due to the poten-
tial for gender associated biases, the application of the methods 
described here to gender-specific data sets (e.g., ovarian cancer, 
prostate cancer, etc.) could be augmented by including both auto-
somal and non-autosomal L-DMRs. However, we expect only 
marginal differences in cell type estimates, as only a small fraction 
of the top L-DMRs were associated with non-autosomal CpG loci 
(6 out of 500). Similarly, future work involving methylation pro-
filing of additional sorted cell types, such as nucleated red blood 
cells present at birth and in cord blood, M1 and M2 macrophages, 
and myeloid derived suppressor cells, have the potential to further 
refine studies of infant cord blood methylation profiles.

It should also be noted that while confounding in blood-
based assessment of DNA methylation by variation in circulat-
ing immune cells motivated the methods described in Houseman 
et al.18, the underlying proportion of leukocytes could also con-
found other leukocyte DNA biomarker relationships, including 
the relationship between telomere length, repetitive element DNA 
methylation,13 or mitochondrial copy number14 and exposures or 
disease phenotypes. Thus, future applications might involve an 
extension of the methods of Houseman et al.18 for deconvoluting 
cell mixtures using DNA methylation data and controlling for 
this confounding in studies of these and other leukocyte-based 
biomarkers.

Our sensitivity analysis of cell type predictions as a function 
of the number of L-DMRs, m, used in CP, demonstrated that 
both the rMSE and the correlation between predicted and CBC-
derived cell type proportions were relatively stable as a function 
of m. While we and others19 have found that using the top 500 
L-DMRs in CP works well, we recommend that investigators 
interested in implementing this methodology do so using a range 
of L-DMRs, ensuring that cell type predictions remain relatively 
stable as a function of m. We also note that other algorithms to 
identify L-DMRs, i.e., ones that employ an approach other than 
omnibus F-statistics from one-way ANOVA, might result in dif-
ferent optimal number of L-DMRs. For example, t-statistics for 
pairwise comparisons of CpG-specific DNA methylation across 
leukocyte subtypes may actually result in a fewer number of 
total L-DMRs while maintaining or exceeding the prediction 
performance.
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value of ω that minimizes  with the constraint  
ω

k
 ≥ 0, k ϵ {1,2,…K } and the additional constraint that  

.
The former constraint ensures non-negativity among for esti-

mated proportion of particular cell type and the later ensures that 
the coefficients have the “multinomial” interpretation of additive 
proportions.

Bootstrap resampling was used to quantify uncertainty in the 
estimation of Ω

i
. Since there are several sources of variability, 

including variability in the observed methylation values for the 
samples in S

1
 and in the estimate of M, a parametric bootstrap 

procedure was used to obtain resampled estimates of the cell type 
proportions,  for each sample in S

1
. The 

standard deviation of the resampled estimates of the cell type 
proportions were computed and used to construct 95% predic-
tion intervals for . Further details regarding the parametric 
bootstrap procedure are provided elsewhere.18

In our examination, we focused first on obtaining the esti-
mate  followed by the subsequent comparison of  and Ω

i
(CBC), 

where Ω
i
(CBC) represents the proportions of the K leukocyte sub-

jects obtained using complete blood cell count measurements. 
Additionally m, or the number of L-DMRs used in the con-
strained projection, is a tuning parameter. Thus, we also exam-
ined the sensitivity of  as value of m was varied from 20 to 
10 000.

We note a few considerations that arise in the comparison of 
 and Ω

i
(CBC). As previously mentioned, our target data set con-

sisted of whole-blood, CBC counts of lymphocytes, monocytes, 
basophils, eosinophils and neutrophils (whereas DNA methyla-
tion was profiled in PBMCs). The percentage of these cells in 
whole-blood was taken to be the count of the various cell types 
per 10−9 liter of whole-blood dived by the sum of the counts over 
all cell types. The percentage of granulocytes was computed 
as: granulocyte(%) = basophil(%) + eosinophils(%) + neutro-
phil(%). Since DNA methylation was assessed in PBMCs, which 

magnetic-activated cell sorting (MACS) using a combination of 
negative and positive selection with highly specific cell surface 
antibodies conjugated to magnetic beads. The purity of sepa-
rated cells was confirmed with flow cytometry to be >97% and 
included 46 white blood cell samples, comprising lymphoid [B 
cells, Natural Killer (NK) cells, and Pan-T-cells] and myeloid 
(Monoctyes and Granulocytes) derived cells (Table 1). Genomic 
DNA was extracted and purified from cell pellets using a com-
mercially available method (Qiagen), treated with sodium bisul-
fite (Zymo Research) and subjected to methylation profiling 
using the Infinium HumanMethyation27 BeadArray (Illumina); 
the same platform used for the DNA methylation analysis of the 
target samples described above.

Statistical methods. While a complete description of the 
constrained projection (CP) approach for predicting cell type 
proportions based on DNA methylation signatures from a het-
erogeneous mixture of cells has been described previously by 
Houseman et al.,18 below we summarize the salient aspects of this 
approach with specific attention given towards those that relate 
to this validation analysis. As described above, let S

0
 denote the 

reference sample of DNA methylation profiles from isolated cells 
and let S

1
 denote the corresponding set of target DNA methyla-

tion profiles, which are assumed to arise from mixtures of the 
cell types isolated in S

0
 (Fig. 1B). Here, S

0
 is comprised of the 

DNA methylation profiles for n
0
 specimens (n

0
 = 46 based on our 

reference data set), Y
0i
, i = 1, 2, …, n

0
, an m × 1 vector of DNA 

methylation measurements. Similarly, S
1
 consists of the DNA 

methylation profiles for n
1
 samples (n

1
 = 99 based on our target 

data set), Y
1i
, i = 1, 2, …, n

1
, for the same m CpG sites in Y

0i
 (and 

in the same order). Each element in Y
hi
, h ϵ {0,1} corresponds to a 

specific, pre-selected L-DMR chosen to distinguish one or more 
of the cellular subtypes assayed in S

0
 and contributing to the mix-

tures measured in S
1
. As previously described,10,18 L-DMRs were 

identified by rank ordering CpGs based on the F-statistics for 
distinguishing cell types, obtained from a series of linear mixed 
effects models fit to each CpG independently among the speci-
mens in S

0
. Assuming that S

0
 is comprised of K different cell 

types (K = 6 based on our reference data set), each of which has 
mean μ

k
, we have that E(Y

oi
|c

i
 = k) = μ

k
, where c

i
 denotes cell type 

and c
i
 = {1,2,…,k}. Therefore, M = (μ

1
,μ

2
,…,μ

k
) represents an 

m × K matrix of mean methylation for the m selected L-DMRs 
across the K different leukocyte subtypes. Here, we used a series 
of mixed effects models (i.e., treating chip as a random effect) to 
obtain .

Assuming that subject i assayed in S
1
 is a mixture of 

the K leukocyte subtypes assayed in the reference set S
0
, 

with mixing coefficients represented by a K × 1 vector Ω
i
,  

, where Ω
ik
 ≥ 0, then E(Y

1i
|Ω

i
 = ω) = Mω.

That is, the methylation profile of subject i in the target data 
is assumed to arise as the weighted methylation profile across 
the K leukocyte subjects, such that the contribution of each sub-
type, or otherwise the proportion of each leukocyte subtype, 
is reflected by ω. Thus, interest here is focused on the estima-
tion of Ω

i
. Houseman et al.18 demonstrate that Ω

i
 can be esti-

mated using constrained projection, i.e., by setting  to the 

Table 1. sorted white blood cell types in reference set, s0

Cell lineage Cell type Description
Sample 

size

Lymphoid

B cells cD19+ B-lymphocytes 6

NK cells cD56+ Natural Killer (NK) cells 11

cD4+ T cells*,† cD3+cD4+ T-lymphocytes 8

cD8+ T cells*,‡ cD3+cD8+ T-lymphocytes 2

NKT T cells* cD3+cD56+ T-lymphocytes 1

T cells (other)* cD3+ T-lymphocytes 5

Myeloid
Granulocytes cD15+ granulocytes 8

Monocytes cD14+ monocytes 5

Total  -  - 46

*considered as a member of the “pan-T-cell” group. †pan T-cell further 
refined as also belonging to the “cD4+” group. ‡pan T-cell further 
refined as also belonging to the “cD8+” group.
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(high/low), current socio-economic status (high/low), alcohol 
consumption (drinks per week), BMI, exercise (min. per week), 
stress (perceived stress scale questionnaire), depression (center for 
epidemiologic studies depression scale) and ethnicity (Caucasian/
non-Caucasian). For each of the above factors, a linear mixed 
effects model was fit that modeled prediction error or absolute 
prediction error as the response, the potential confounder as the 
independent variable, and a included random effect term for sub-
ject to account for correlated errors among replicate samples col-
lected from the same subject. Unadjusted and false discovery rate 
adjusted P-values were computed for each of aforementioned fac-
tors. Along these lines, we also examined the association between 
the top 500 L-DMRs and each of the covariates described above. 
Further details regarding the methods used in the analysis are 
given in the Supplemental Material.
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contain a negligible proportion of granulocytes, the percentage 
of lymphocytes and monocytes in PBMCs were taken to be the 
percentage of these cell types in the absence of granulocytes, i.e., 
the count of these cell types per 10−9 liter of whole-blood by the 
sum of the counts of only lymphocytes and monocytes per 10−9 
liter of whole-blood. Thus, Ω

i
(CBC) is a 1 × 3 vector, representing 

the proportions of lymphocytes, monocytes, and granulocytes in 
PBMCs.

In combination with the methylation data available for our 
target data, our reference data on isolated leukocyte subtypes, 
allowed us to obtain estimates of the proportions of each of the 
cell types given in Table 1. Since such a detailed speciation of 
leukocytes was not available from the CBC measurements in the 
target data—particularly for the lymphoid derived cell types—
we took our estimate of the proportion of lymphocytes to be the 
sum of the individual estimates of the lymphoid derived cells, 
i.e., Lymphocyte(%) = CD4+Tcell(%) + CD8+Tcell(%) + NK 
cell(%) + Bcell(%). Hence,  represents a 1 × 3 vector, indicat-
ing the estimated proportions of lymphocytes, monocytes, and 
granulocytes for sample i within the target data.

Given the potential for confounding in the analysis of DNA 
methylation data based on factors such as age, gender, race, 
smoking status, etc., we conducted a series of analyses aimed 
at examining the association between the prediction error and 
absolute prediction error [  and ] and 
potential confounders. Specifically, we examined the extent to 
which bias in our predictions are associated with: age (y), gen-
der, smoking status (yes/no), childhood socio-economic status 
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